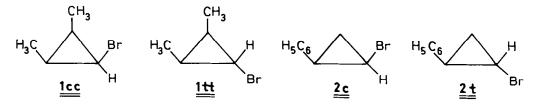
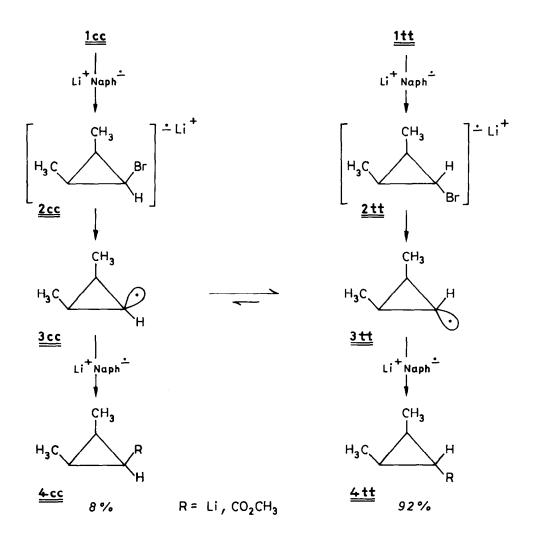
CONFIGURATIONAL STABILITY OF CYCLOPROPYL RADICALS IN ELECTRON-TRANSFER REACTIONS WITH NAPHTHALENE RADICAL ANION


Gernot Boche and Dieter R. Schneider

Institut für Organische Chemie der Universität, 8 München 2, Karlstr. 23


(Received in UK 26 April 1978; accepted for publication 4 May 1978)

Cyclopropyl radicals normally undergo complete thermodynamic equilibration of configuration before they react, e.g., with bromine in the Hunsdiecker reaction¹. Incomplete equilibration is normally due to steric or cage effects², and to surface effects when cyclopropyl halides are reduced with metals^{3,4}. Jacobus and Pensak, however, proposed that an optically active tertiary cyclopropyl radical had been trapped by sodium naphthalene when optically active 1-methyl-2,2-diphenylcyclopropyl bromide was reacted with this one-electron-transfer reagent ⁵.

We studied the reaction of other substituted cyclopropyl bromides ($\underline{1}\underline{c}\underline{c}$, $\underline{1}\underline{t}\underline{t}$, $\underline{2}\underline{c}$ and $\underline{2}\underline{t}$) with lithium naphthalene (Li⁺Naph⁻)⁶ in order to find out whether we could confirm the above mentioned result.

Reaction of Li⁺Naph⁻ with 1-bromo-<u>cis</u>,<u>cis</u>-2,3-dimethylcyclopropane (<u>1cc</u>) or with the <u>trans</u>,<u>trans</u>-isomer <u>1tt</u>^{7,9} led after carboxylation and methylation to the identical 8:92 mixture of the <u>cis</u>,<u>cis</u>- and <u>trans</u>,<u>trans</u>-carboxymethylates <u>4cc</u> (R=CO₂CH₃) and <u>4tt</u> (R=CO₂CH₃), respectively¹⁰.

A completely analogous result was obtained with <u>cis</u>- and <u>trans</u>-1-bromo-2phenyl cyclopropanes ($\underline{2c}$ and $\underline{2t}$, respectively)¹²: Both isomers yielded the identical 21:79 mixture of <u>cis</u>- and <u>trans</u>-2-phenylcyclopropyl carboxymethylates¹⁴. These results have two implications:

(1) There is no indication that bromide containing cyclopropyl radical anions $Rx \dot{M}^+$ like $\underline{2cc}$ and $\underline{2tt}$ can be trapped by lithium naphthalene. Either they decompose very rapidly¹⁶ or dissociative electron transfer takes place to give cyclopropyl radicals like $\underline{3cc}$ and $\underline{3tt}$ directly. Garst¹⁷ arrived at the same conclusion for alkyl halide radical anions $Rx \dot{M}^+$.

(2) Inversion of secondary cyclopropyl radicals to reach the thermodynamic equilibrium is faster than electron transfer from Li^+Naph^- to give configu-

rationally stable cyclopropyl lithium compounds like $4\underline{cc}$ and $4\underline{tt}$ (R=Li). This is in contrast to the result of Jacobus and Pensak⁵.

Assuming a similar rate constant for the reaction of cyclopropyl radicals like $\underline{3}\underline{c}\underline{c}$ with Li⁺Naph⁻¹ in THF as for the reaction of primary alkyl radicals with Na⁺Naph⁻¹ in DME (k = 1.6 \cdot 10⁹ 1/mol · s)¹⁸, the rate constant for the inversion $\underline{3}\underline{c}\underline{c} \Rightarrow \underline{3}\underline{t}\underline{t}$ is $\geq 5 \cdot 10^9 \text{ s}^{-1}$, corresponding to $\underline{4}G^{\dagger} \leq 3.7 \text{ kcal·mole}^{-1}$. Thus, our results derived from chemical reactions are in good agreement with ESR spectroscopic data both of Fessenden and Schuler¹⁹ who reported in 1963 that inversion of the cyclopropyl radical in cyclopropane at -120°C "occurs at high frequency", and of Kawamura et al.²⁰ who recently showed that cyclopropyl radicals invert at -99°C with k>8 $\cdot 10^7 \text{ s}^{-1}$. Kawamura et al. also found that $\underline{3}\underline{t}\underline{t}$ is more stable than $\underline{3}\underline{c}\underline{c}$, corresponding to our findings. In conclusion, cyclopropyl bromide radical anions cannot be trapped with Li⁺Naph⁻¹ (0.9 M) in THF at room temperature. Similarly, inversion of secondary cyclopropyl radicals to reach the thermodynamic equilibrium is faster than electron transfer from Li⁺Naph⁻¹.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. D.R.S. acknowledges a Stipendium of the Studienstiftung des Deutschen Volkes.

References and Notes

- 1. K.Kobayashi and J.B.Lambert, J.Org.Chem. <u>42</u>, 1254 (1977).
- H.M.Walborsky and C.-J.Chen, J.Amer.Chem.Soc. <u>89</u>, 5499 (1967); ibid. <u>93</u>,
 671 (1971); L.J.Altman and B.W.Nelson, J.Amer.Chem.Soc. <u>91</u>, 5163 (1969);
 L.J.Altman and T.R.Erdman, Tetrahedron Lett. <u>1970</u>, 4891.
- H.M.Walborsky and M.S.Aronoff, J.Organomet.Chem. <u>51</u>, 31 (1973); ibid. <u>51</u>, 55 (1973).
- 4. M.J.S.Dewar and J.M.Harris, J.Amer.Chem.Soc. <u>91</u>, 3652 (1969). As shown by these authors, the reaction of <u>lcc</u> (<u>ltt</u>) with lithium yields 54 (31) % <u>4cc</u> (R=Li) and 46 (69) % <u>4tt</u> (R=Li). Thus, the reduction with Li is totally different from the reduction with lithium naphthalene reported in

this work.

- 5. J.Jacobus and D.Pensak, Chem.Commun. 1969, 400.
- 6. Lithium naphthalene was used because cyclopropyl sodium and cyclopropyl potassium compounds react immediately with the solvent THF to give cyclopropanes.
- 7. <u>lcc</u> and <u>ltt</u> were prepared from 1,1-dibromo-cis-2,3-dimethylcyclopropane by reduction with tri-n-butyltinhydride, separated by glc, and identified by comparison with authentic samples⁸.
- 8. G.L.Closs and J.J.Coyle, J.Amer.Chem.Soc. 87, 4270 (1965).
- 9. 1.0 ml of a 0.9 M solution of <u>lcc</u> (or of <u>ltt</u>) in THF was added to 10 ml of a 0.9 M solution of Li⁺Naph⁻ in THF at ambient temperature. Inverse addition gave the same results.
- 10. Ratios of $\underline{4cc}$ and $\underline{4tt}$ (R=CO₂CH₃, prepared from the carboxylic acids with CH₃OH/BF₃) were determined by glc; identification was accomplished by comparison with authentic samples¹¹.
- 11. D.E.McGreer, P.Morris and G.Carmichael, Can.J.Chem. 41, 726 (1963).
- 12. <u>2c</u> and <u>2t</u> were prepared from 1,1-dibromo-2-phenylcyclopropane by reductions with Zn/CH₃COOH and n-butyllithium at -100^oC, respectively. In the reductions, 73:27 and 28:72 mixtures of <u>2c</u> and <u>2t</u> were used; reaction conditions like ⁹. Identification was accomplished by comparison with authentic samples¹³.
- 13. J.W.Hausser and M.J.Grubber, J.Org.Chem. <u>37</u>, 2648 (1972).
- 14. Ratios of <u>cis</u>- and <u>trans</u>- carboxymethylates were determined by glc; identification was achieved by comparison with authentic samples¹⁵.
- 15. G.L.Krueger, F.Kaplan, M.Orchin and W.H.Faul, Tetrahedron Lett. 1965, 3979.
- 16. According to J.F.Garst, R.D.Roberts and J.A.Pacifici, J.Amer.Chem.Soc. <u>99</u>, 3528 (1977), the rate constant for the decomposition of aliphatic $RX^{-1}M^{+}$ is 10^{10} s^{-1} .
- 17. J.F.Garst, Acc.Chem.Res. <u>4</u>, 400 (1971).
- 18. J.F.Garst and F.E.Barton II, J.Amer.Chem.Soc. 96, 523 (1974).
- 19. R.W.Fessenden and R.H.Schuler, J.Chem.Phys. 39, 2147 (1963).
- 20. T.Kawamura, M.Tsumura, Y.Yokomichi and T.Yonezawa, J.Amer.Chem.Soc. <u>99</u>, 8251 (1977).